Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496433

RESUMO

Epigenetic control of gene expression is crucial for maintaining gene regulation. Sin3 is an evolutionarily conserved repressor protein complex mainly associated with histone deacetylase (HDAC) activity. A large number of proteins are part of Sin3/HDAC complexes, and the function of most of these members remains poorly understood. SAP25, a previously identified Sin3A associated protein of 25 kDa, has been proposed to participate in regulating gene expression programs involved in the immune response but the exact mechanism of this regulation is unclear. SAP25 is not expressed in HEK293 cells, which hence serve as a natural knockout system to decipher the molecular functions uniquely carried out by this Sin3/HDAC subunit. Using molecular, proteomic, protein engineering, and interaction network approaches, we show that SAP25 interacts with distinct enzymatic and regulatory protein complexes in addition to Sin3/HDAC. While the O-GlcNAc transferase (OGT) and the TET1 /TET2/TET3 methylcytosine dioxygenases have been previously linked to Sin3/HDAC, in HEK293 cells, these interactions were only observed in the affinity purification in which an exogenously expressed SAP25 was the bait. Additional proteins uniquely recovered from the Halo-SAP25 pull-downs included the SCF E3 ubiquitin ligase complex SKP1/FBXO3/CUL1 and the ubiquitin carboxyl-terminal hydrolase 11 (USP11), which have not been previously associated with Sin3/HDAC. Finally, we use mutational analysis to demonstrate that distinct regions of SAP25 participate in its interaction with USP11, OGT/TETs, and SCF(FBXO3).) These results suggest that SAP25 may function as an adaptor protein to coordinate the assembly of different enzymatic complexes to control Sin3/HDAC-mediated gene expression.

2.
Nat Commun ; 15(1): 1365, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355719

RESUMO

Ribonucleoprotein complexes are composed of RNA, RNA-dependent proteins (RDPs) and RNA-binding proteins (RBPs), and play fundamental roles in RNA regulation. However, in the human malaria parasite, Plasmodium falciparum, identification and characterization of these proteins are particularly limited. In this study, we use an unbiased proteome-wide approach, called R-DeeP, a method based on sucrose density gradient ultracentrifugation, to identify RDPs. Quantitative analysis by mass spectrometry identifies 898 RDPs, including 545 proteins not yet associated with RNA. Results are further validated using a combination of computational and molecular approaches. Overall, this method provides the first snapshot of the Plasmodium protein-protein interaction network in the presence and absence of RNA. R-DeeP also helps to reconstruct Plasmodium multiprotein complexes based on co-segregation and deciphers their RNA-dependence. One RDP candidate, PF3D7_0823200, is functionally characterized and validated as a true RBP. Using enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq), we demonstrate that this protein interacts with various Plasmodium non-coding transcripts, including the var genes and ap2 transcription factors.


Assuntos
Plasmodium , RNA , Humanos , RNA/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Plasmodium/genética
3.
Elife ; 122023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099650

RESUMO

Ribosome biogenesis is a vital and highly energy-consuming cellular function occurring primarily in the nucleolus. Cancer cells have an elevated demand for ribosomes to sustain continuous proliferation. This study evaluated the impact of existing anticancer drugs on the nucleolus by screening a library of anticancer compounds for drugs that induce nucleolar stress. For a readout, a novel parameter termed 'nucleolar normality score' was developed that measures the ratio of the fibrillar center and granular component proteins in the nucleolus and nucleoplasm. Multiple classes of drugs were found to induce nucleolar stress, including DNA intercalators, inhibitors of mTOR/PI3K, heat shock proteins, proteasome, and cyclin-dependent kinases (CDKs). Each class of drugs induced morphologically and molecularly distinct states of nucleolar stress accompanied by changes in nucleolar biophysical properties. In-depth characterization focused on the nucleolar stress induced by inhibition of transcriptional CDKs, particularly CDK9, the main CDK that regulates RNA Pol II. Multiple CDK substrates were identified in the nucleolus, including RNA Pol I- recruiting protein Treacle, which was phosphorylated by CDK9 in vitro. These results revealed a concerted regulation of RNA Pol I and Pol II by transcriptional CDKs. Our findings exposed many classes of chemotherapy compounds that are capable of inducing nucleolar stress, and we recommend considering this in anticancer drug development.


Ribosomes are cell structures within a compartment called the nucleolus that are required to make proteins, which are essential for cell function. Due to their uncontrolled growth and division, cancer cells require many proteins and therefore have a particularly high demand for ribosomes. Due to this, some anti-cancer drugs deliberately target the activities of the nucleolus. However, it was not clear if anti-cancer drugs with other targets also disrupt the nucleolus, which may result in side effects. Previously, it had been difficult to study how nucleoli work, partly because in human cells they vary naturally in shape, size, and number. Potapova et al. used fluorescent microscopy to develop a new way of assessing nucleoli based on the location and ratio of certain proteins. These measurements were used to calculate a "nucleolar normality score". Potapova et al. then tested over a thousand anti-cancer drugs in healthy and cancerous human cells. Around 10% of the tested drugs changed the nucleolar normality score when compared to placebo treatment, indicating that they caused nucleolar stress. For most of these drugs, the nucleolus was not the intended target, suggesting that disrupting it was an unintended side effect. Drugs inhibiting proteins called cyclin-dependent kinases caused the most drastic changes in the size and shape of nucleoli, disrupting them completely. These kinases are known to be involved in activating enzymes required for general transcription. Potapova et al. showed that they also are involved in production of ribosomal RNA, revealing an additional role in coordinating ribosome assembly. Taken together, the findings suggest that evaluating the effect of new anti-cancer drugs on the nucleolus could help to develop future treatments with less toxic side effects. The experiments also reveal new avenues for researching how cyclin-dependent kinases control the production of RNA more generally.


Assuntos
Antineoplásicos , Nucléolo Celular , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Ribossomos/metabolismo , RNA Polimerase I/metabolismo , Quinases Ciclina-Dependentes/metabolismo , RNA Polimerase II/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , RNA/metabolismo
4.
J Cell Sci ; 136(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921359

RESUMO

The nucleolus is sensitive to stress and can orchestrate a chain of cellular events in response to stress signals. Despite being a growth factor, FGF2 has antiproliferative and tumor-suppressive functions in some cellular contexts. In this work, we investigated how the antiproliferative effect of FGF2 modulates chromatin-, nucleolus- and rDNA-associated proteins. The chromatin and nucleolar proteome indicated that FGF2 stimulation modulates proteins related to transcription, rRNA expression and chromatin-remodeling proteins. The global transcriptional rate and nucleolus area increased along with nucleolar disorganization upon 24 h of FGF2 stimulation. FGF2 stimulation induced immature rRNA accumulation by increasing rRNA transcription. The rDNA-associated protein analysis reinforced that FGF2 stimulus interferes with transcription and rRNA processing. RNA Pol I inhibition partially reversed the growth arrest induced by FGF2, indicating that changes in rRNA expression might be crucial for triggering the antiproliferative effect. Taken together, we demonstrate that the antiproliferative FGF2 stimulus triggers significant transcriptional changes and modulates the main cell transcription site, the nucleolus.


Assuntos
Nucléolo Celular , Fator 2 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Nucléolo Celular/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transcrição Gênica , DNA Ribossômico/genética , Cromatina/genética , Cromatina/metabolismo
6.
Mol Microbiol ; 119(6): 752-767, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37170643

RESUMO

Borrelia spirochetes are unique among diderm bacteria in their lack of lipopolysaccharide (LPS) in the outer membrane (OM) and their abundance of surface-exposed lipoproteins with major roles in transmission, virulence, and pathogenesis. Despite their importance, little is known about how surface lipoproteins are translocated through the periplasm and the OM. Here, we characterized Borrelia burgdorferi BB0838, a distant homolog of the OM LPS assembly protein LptD. Using a CRISPR interference approach, we showed that BB0838 is required for cell growth and envelope stability. Upon BB0838 knockdown, surface lipoprotein OspA was retained in the inner leaflet of the OM, as determined by its inaccessibility to in situ proteolysis but its presence in OM vesicles. The topology of the OM porin/adhesin P66 remained unaffected. Quantitative mass spectrometry of the B. burgdorferi membrane-associated proteome confirmed the selective periplasmic retention of surface lipoproteins under BB0838 knockdown conditions. Additional analysis identified a single in situ protease-accessible BB0838 peptide that mapped to a predicted ß-barrel surface loop. Alphafold Multimer modeled a B. burgdorferi LptB2 FGCAD complex spanning the periplasm. Together, this suggests that BB0838/LptDBb facilitates the essential terminal step in spirochetal surface lipoprotein secretion, using an orthologous OM component of a pathway that secretes LPS in proteobacteria.


Assuntos
Borrelia burgdorferi , Borrelia burgdorferi/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipopolissacarídeos/metabolismo , Bactérias/metabolismo , Lipoproteínas/metabolismo
7.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778327

RESUMO

WDR76 is a multifunctional protein involved in many cellular functions. With a diverse and complicated protein interaction network, dissecting the structure and function of specific WDR76 complexes is needed. We previously demonstrated the ability of the Serial Capture Affinity Purification (SCAP) method to isolate specific complexes by introducing two proteins of interest as baits at the same time. Here, we applied SCAP to dissect a subpopulation of WDR76 in complex with SPIN1, a histone marker reader that specifically recognizes trimethylated histone H3 lysine4 (H3K4me3). In contrast to the SCAP analysis of the SPIN1:SPINDOC complex, H3K4me3 was copurified with the WDR76:SPIN1 complex. In combination with crosslinking mass spectrometry, we built an integrated structural model of the complex which revealed that SPIN1 recognized the H3K4me3 epigenetic mark while interacting with WDR76. Lastly, interaction network analysis of copurifying proteins revealed the potential role of the WDR76:SPIN1 complex in the DNA damage response. Teaser: In contrast to the SPINDOC/SPIN1 complex, analyses reveal that the WDR76/SPIN1 complex interacts with core histones and is involved in DNA damage.

8.
Proc Natl Acad Sci U S A ; 120(5): e2204427120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693105

RESUMO

Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.


Assuntos
Characidae , Animais , Humanos , Characidae/genética , Evolução Biológica , Glicogênio , Músculos , México , Cavernas , Mamíferos
9.
EMBO Rep ; 24(1): e55345, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36354291

RESUMO

Paraspeckles are subnuclear RNA-protein structures that are implicated in important processes including cellular stress response, differentiation, and cancer progression. However, it is unclear how paraspeckles impart their physiological effect at the molecular level. Through biochemical analyses, we show that paraspeckles interact with the SWI/SNF chromatin-remodeling complex. This is specifically mediated by the direct interaction of the long-non-coding RNA NEAT1 of the paraspeckles with ARID1B of the cBAF-type SWI/SNF complex. Strikingly, ARID1B depletion, in addition to resulting in loss of interaction with the SWI/SNF complex, decreases the binding of paraspeckle proteins to chromatin modifiers, transcription factors, and histones. Functionally, the loss of ARID1B and NEAT1 influences the transcription and the alternative splicing of a common set of genes. Our findings reveal that dynamic granules such as the paraspeckles may leverage the specificity of epigenetic modifiers to impart their regulatory effect, thus providing a molecular basis for their function.


Assuntos
Paraspeckles , RNA Longo não Codificante , Fatores de Transcrição/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética
10.
PLoS Pathog ; 18(8): e1010776, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994509

RESUMO

The phylum Apicomplexa includes thousands of species of unicellular parasites that cause a wide range of human and animal diseases such as malaria and toxoplasmosis. To infect, the parasite must first initiate active movement to disseminate through tissue and invade into a host cell, and then cease moving once inside. The parasite moves by gliding on a surface, propelled by an internal cortical actomyosin-based motility apparatus. One of the most effective invaders in Apicomplexa is Toxoplasma gondii, which can infect any nucleated cell and any warm-blooded animal. During invasion, the parasite first makes contact with the host cell "head-on" with the apical complex, which features an elaborate cytoskeletal apparatus and associated structures. Here we report the identification and characterization of a new component of the apical complex, Preconoidal region protein 2 (Pcr2). Pcr2 knockout parasites replicate normally, but they are severely diminished in their capacity for host tissue destruction due to significantly impaired invasion and egress, two vital steps in the lytic cycle. When stimulated for calcium-induced egress, Pcr2 knockout parasites become active, and secrete effectors to lyse the host cell. Calcium-induced secretion of the major adhesin, MIC2, also appears to be normal. However, the movement of the Pcr2 knockout parasite is spasmodic, which drastically compromises egress. In addition to faulty motility, the ability of the Pcr2 knockout parasite to assemble the moving junction is impaired. Both defects likely contribute to the poor efficiency of invasion. Interestingly, actomyosin activity, as indicated by the motion of mEmerald tagged actin chromobody, appears to be largely unperturbed by the loss of Pcr2, raising the possibility that Pcr2 may act downstream of or in parallel with the actomyosin machinery.


Assuntos
Parasitos , Toxoplasma , Actomiosina/metabolismo , Animais , Cálcio/metabolismo , Interações Hospedeiro-Parasita , Humanos , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
11.
Genetics ; 222(1)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35792852

RESUMO

How serine/threonine phosphatases are spatially and temporally tuned by regulatory subunits is a fundamental question in cell biology. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins are protein phosphatase 1 catalytic subunit binding partners associated with cardiocutaneous diseases. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize protein phosphatase 1 catalytic subunit to cell-cell junctions, but how ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize and whether they regulate protein phosphatase 1 catalytic subunit activity in vivo is unclear. Through a Caenorhabditis elegans genetic screen, we find that loss of the ankyrin repeat, SH3 domain, proline-rich-region-containing protein homolog, APE-1, suppresses a pathology called "jowls," providing us with an in vivo assay for APE-1 activity. Using immunoprecipitations and mass spectrometry, we find that APE-1 binds the protein phosphatase 1 catalytic subunit called GSP-2. Through structure-function analysis, we discover that APE-1's N-terminal half directs the APE-1-GSP-2 complex to intercellular junctions. Additionally, we isolated mutations in highly conserved residues of APE-1's ankyrin repeats that suppress jowls yet do not preclude GSP-2 binding, implying APE-1 does more than simply localize GSP-2. Indeed, in vivo reconstitution of APE-1 suggests the ankyrin repeats modulate phosphatase output, a function we find to be conserved among vertebrate homologs.


Assuntos
Caenorhabditis elegans , Hominidae , Animais , Caenorhabditis elegans/metabolismo , Prolina/metabolismo , Ligação Proteica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo , Domínios de Homologia de src
12.
Curr Biol ; 32(13): 2884-2896.e6, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35654035

RESUMO

The ring-like cohesin complex plays an essential role in chromosome segregation, organization, and double-strand break repair through its ability to bring two DNA double helices together. Scc2 (NIPBL in humans) together with Scc4 functions as the loader of cohesin onto chromosomes. Chromatin adapters such as the RSC complex facilitate the localization of the Scc2-Scc4 cohesin loader. Here, we identify a broad range of Scc2-chromatin protein interactions that are evolutionarily conserved and reveal a role for one complex, Mediator, in the recruitment of the cohesin loader. We identified budding yeast Med14, a subunit of the Mediator complex, as a high copy suppressor of poor growth in Scc2 mutant strains. Physical and genetic interactions between Scc2 and Mediator are functionally substantiated in direct recruitment and cohesion assays. Depletion of Med14 results in defective sister chromatid cohesion and the decreased binding of Scc2 at RNA Pol II-transcribed genes. Previous work has suggested that Mediator, Nipbl, and cohesin connect enhancers and promoters of active mammalian genes. Our studies suggest an evolutionarily conserved fundamental role for Mediator in the direct recruitment of Scc2 to RNA Pol II-transcribed genes.


Assuntos
Segregação de Cromossomos , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Mamíferos/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nat Commun ; 13(1): 1275, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277503

RESUMO

The RAP (RNA-binding domain abundant in Apicomplexans) protein family has been identified in various organisms. Despite expansion of this protein family in apicomplexan parasites, their main biological functions remain unknown. In this study, we use inducible knockdown studies in the human malaria parasite, Plasmodium falciparum, to show that two RAP proteins, PF3D7_0105200 (PfRAP01) and PF3D7_1470600 (PfRAP21), are essential for parasite survival and localize to the mitochondrion. Using transcriptomics, metabolomics, and proteomics profiling experiments, we further demonstrate that these RAP proteins are involved in mitochondrial RNA metabolism. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (eCLIP-seq), we validate that PfRAP01 and PfRAP21 are true RNA-binding proteins and interact specifically with mitochondrial rRNAs. Finally, mitochondrial enrichment experiments followed by deep sequencing of small RNAs demonstrate that PfRAP21 controls mitochondrial rRNA expression. Collectively, our results establish the role of these RAP proteins in mitoribosome activity and contribute to further understanding this protein family in malaria parasites.


Assuntos
Malária Falciparum , Ribossomos Mitocondriais , Plasmodium falciparum , Proteínas de Protozoários , Proteínas de Ligação a RNA , Genômica , Humanos , Malária Falciparum/parasitologia , Ribossomos Mitocondriais/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
Cell Chem Biol ; 29(2): 312-320.e7, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35180432

RESUMO

Synthetic messenger RNA (mRNA) is an emerging therapeutic platform with important applications in oncology and infectious disease. Effective mRNA medicines must be translated by the ribosome but not trigger a strong nucleic acid-mediated immune response. To expand the medicinal chemistry toolbox for these agents, here we report the properties of the naturally occurring nucleobase N4-acetylcytidine (ac4C) in synthetic mRNAs. We find that ac4C is compatible with, but does not enhance, protein production in the context of synthetic mRNA reporters. However, replacement of cytidine with ac4C diminishes inflammatory gene expression in immune cells caused by synthetic mRNAs. Chemoproteomic capture indicates that ac4C alters the protein interactome of synthetic mRNAs, reducing binding to cytidine-binding proteins and an immune sensor. Overall, our studies illustrate the unique ability of ac4C to modulate RNA-protein interactions and provide a foundation for using N4-cytidine acylation to fine-tune the properties of nucleic acid therapeutics.


Assuntos
Citidina/metabolismo , Inflamação/metabolismo , RNA Mensageiro/metabolismo , Acetilação , Células Cultivadas , Humanos , Processamento de Proteína Pós-Traducional
15.
Nat Commun ; 13(1): 1067, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217638

RESUMO

Telomerase reverse transcriptase (TERT) and the noncoding telomerase RNA (TR) subunit constitute the core of telomerase. Additional subunits are required for ribonucleoprotein complex assembly and in some cases remain stably associated with the active holoenzyme. Pof8, a member of the LARP7 protein family is such a constitutive component of telomerase in fission yeast. Using affinity purification of Pof8, we have identified two previously uncharacterized proteins that form a complex with Pof8 and participate in telomerase biogenesis. Both proteins participate in ribonucleoprotein complex assembly and are required for wildtype telomerase activity and telomere length maintenance. One factor we named Thc1 (Telomerase Holoenzyme Component 1) shares structural similarity with the nuclear cap binding complex and the poly-adenosine ribonuclease (PARN), the other is the ortholog of the methyl phosphate capping enzyme (Bin3/MePCE) in metazoans and was named Bmc1 (Bin3/MePCE 1) to reflect its evolutionary roots. Thc1 and Bmc1 function together with Pof8 in recognizing correctly folded telomerase RNA and promoting the recruitment of the Lsm2-8 complex and the catalytic subunit to assemble functional telomerase.


Assuntos
Schizosaccharomyces , Telomerase , Holoenzimas/metabolismo , Fosfatos/metabolismo , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Schizosaccharomyces/metabolismo , Telomerase/metabolismo , Telômero/metabolismo
17.
Nat Commun ; 12(1): 6452, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750379

RESUMO

The RNA recognition motif (RRM) binds to nucleic acids as well as proteins. More than one such domain is found in the pre-mRNA processing hnRNP proteins. While the mode of RNA recognition by RRMs is known, the molecular basis of their protein interaction remains obscure. Here we describe the mode of interaction between hnRNP L and LL with the methyltransferase SETD2. We demonstrate that for the interaction to occur, a leucine pair within a highly conserved stretch of SETD2 insert their side chains in hydrophobic pockets formed by hnRNP L RRM2. Notably, the structure also highlights that RRM2 can form a ternary complex with SETD2 and RNA. Remarkably, mutating the leucine pair in SETD2 also results in its reduced interaction with other hnRNPs. Importantly, the similarity that the mode of SETD2-hnRNP L interaction shares with other related protein-protein interactions reveals a conserved design by which splicing regulators interact with one another.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Calorimetria , Linhagem Celular , Cristalografia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Espectrometria de Massas , Ligação Proteica , Splicing de RNA/genética , Splicing de RNA/fisiologia , RNA-Seq
18.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465625

RESUMO

The SNF2 family ATPase Amplified in Liver Cancer 1 (ALC1) is the only chromatin remodeling enzyme with a poly(ADP-ribose) (PAR) binding macrodomain. ALC1 functions together with poly(ADP-ribose) polymerase PARP1 to remodel nucleosomes. Activation of ALC1 cryptic ATPase activity and the subsequent nucleosome remodeling requires binding of its macrodomain to PAR chains synthesized by PARP1 and NAD+ A key question is whether PARP1 has a role(s) in ALC1-dependent nucleosome remodeling beyond simply synthesizing the PAR chains needed to activate the ALC1 ATPase. Here, we identify PARP1 separation-of-function mutants that activate ALC1 ATPase but do not support nucleosome remodeling by ALC1. Investigation of these mutants has revealed multiple functions for PARP1 in ALC1-dependent nucleosome remodeling and provides insights into its multifaceted role in chromatin remodeling.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Reparo do DNA , Humanos
19.
Mol Cell Proteomics ; 20: 100137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34416386

RESUMO

The extracellular matrix (ECM) is a three-dimensional network of macromolecules that provides a microenvironment capable of supporting and regulating cell functions. However, only a few research organisms are available for the systematic dissection of the composition and functions of the ECM, particularly during regeneration. We utilized the free-living flatworm Schmidtea mediterranea to develop an integrative approach consisting of decellularization, proteomics, and RNAi to characterize and investigate ECM functions during tissue homeostasis and regeneration. ECM-enriched samples were isolated from planarians, and their proteomes were characterized by LC-MS/MS. The functions of identified ECM components were interrogated using RNA interference. Using this approach, we found that heparan sulfate proteoglycan is essential for tissue regeneration. Our strategy provides an experimental approach for identifying both known and novel ECM components involved in regeneration.


Assuntos
Matriz Extracelular Descelularizada , Planárias , Regeneração , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteoglicanas de Heparan Sulfato , Homeostase , Planárias/genética , Planárias/metabolismo , Planárias/fisiologia , Proteoma , Interferência de RNA
20.
J Biol Chem ; 297(3): 101075, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34391778

RESUMO

SETD2 is an important methyltransferase that methylates crucial substrates such as histone H3, tubulin, and STAT1 and also physically interacts with transcription and splicing regulators such as Pol II and various hnRNPs. Of note, SETD2 has a functionally uncharacterized extended N-terminal region, the removal of which leads to its stabilization. How this region regulates SETD2 half-life is unclear. Here we show that SETD2 consists of multiple long disordered regions across its length that cumulatively destabilize the protein by facilitating its proteasomal degradation. SETD2 disordered regions can reduce the half-life of the yeast homolog Set2 in mammalian cells as well as in yeast, demonstrating the importance of intrinsic structural features in regulating protein half-life. In addition to the shortened half-life, by performing fluorescence recovery after photobleaching assay we found that SETD2 forms liquid droplets in vivo, another property associated with proteins that contain disordered regions. The phase-separation behavior of SETD2 is exacerbated upon the removal of its N-terminal segment and results in activator-independent histone H3K36 methylation. Our findings reveal that disordered region-facilitated proteolysis is an important mechanism governing SETD2 function.


Assuntos
Histona-Lisina N-Metiltransferase/fisiologia , Proteínas Intrinsicamente Desordenadas/fisiologia , Recuperação de Fluorescência Após Fotodegradação/métodos , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectrometria de Massas/métodos , Metilação , Metiltransferases/metabolismo , Metiltransferases/fisiologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteólise , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...